Exponential distribution


Story

The inter-arrival time of a Poisson process is Exponentially distributed.


Example

The time between conformational switches in a protein is Exponentially distributed (under simple mass action kinetics).


Parameters

The single parameter is the positive arrival rate, \(\beta\). It is an inverse scale parameter.


Support

The Exponential distribution is supported on the set of nonnegative real numbers.


Probability density function

\[\begin{align} f(y;\beta) = \beta \,\mathrm{e}^{-\beta y}. \end{align}\]

Cumulative distribution function

\[\begin{align} F(y; \beta) = 1 - \mathrm{e}^{-\beta y}. \end{align}\]

Moments

Mean: \(\displaystyle{\frac{1}{\beta}}\)

Variance: \(\displaystyle{\frac{1}{\beta^2}}\)


Usage

Package

Syntax

NumPy

rng.exponential(1/beta)

SciPy

scipy.stats.expon(loc=0, scale=1/beta)

Distributions.jl

Exponential(1/beta)

Stan

exponential(beta)



Notes

  • Alternatively, we could parametrize the Exponential distribution in terms of an average time between arrivals of a Poisson process, \(\tau\), as

\[\begin{align} f(y;\tau) = \frac{1}{\tau}\,\mathrm{e}^{-y/\tau}. \end{align}\]

PDF and CDF plots